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Abstract

While there has been a great deal of security research focused on preventing attacks, there
has been less work on how one should balance security and resilience investments. In this
work we developed and evaluated models that captured both explicit defenses and other
mitigations that reduce the impact of attacks. We examined these issues both in more
broadly applicable general Stackelberg models and in more specific network and power grid
settings. Finally, we compared these solutions to existing work in terms of both solution
quality and computational overhead.
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Chapter 1

Introduction

It is clear that terrorist organizations take into account impact (economic and otherwise)
when planning attacks. One prominent example of this is Osama ben Laden’s interview with
Al-Jazeera following 9/11, where he gave economic analysis suggesting that the impact of
these attacks was in excess of one trillion dollars [16]. For this reason, there has been a
great deal of recent work in security using game theory to account for the dynamic nature
of an adversaries response when determining security policies, with deployed applications at
sites such as airports and naval ports. While security investments alone may be the most
economical way to deter attacks for some applications, for many of our larger cyber-physical
systems this is unlikely to be true.

For systems of sufficient scale, complete immunity to failure is prohibitively expensive
(if not impossible). For this reason, strategies for mitigating the effect of system failure
have been studied, including limiting the spread of these failures, speeding the recovery of
the system and maintaining critical infrastructure during failure [4]. However, in contrast
with security policies, these mitigation solutions have generally been designed and evaluated
only in terms of their direct effectiveness against threats, disregarding their potential for
deterrence. One notable exception to this allows the defender to split a defense budget
between protecting generators and substations, increasing generation or line capacity, and
purchasing spare transformers however, their methodology has significant scalability issues
and makes some problematic assumptions about the attacker [14]. Another adds a single
investment area that globally reduces the time needed to repair all failures to a security
model [2]. Additionally, in many of these models, the primary metric is amount of demand
unsatisfied (load shed). While a reasonable starting point, in reality not all power outages
are equivalent. The expected loss for a particular location losing power has been studied in
a range of fields such as [13, 7]. The cost to stockpile redudant, replacement parts (to reduce
the length of a potential outage) has also been studied [15].

We have focused on developing models that incorporate both security and damage miti-
gation of successful attacks in three settings:

• The standard Stackelberg security model with a single attacked target.

• An extended Stackelberg security model that allows for failure cascades, to abstractly
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capture the interconnected nature of the possible targets.

• A model of the power grid using an underlying linear DC power flow model to eval-
uate the consequence of attacks. We first considered the case when a single target is
attacked, and show how to transform this into the standard Stackelberg model. We
then extend these concepts to a k-target framework, both individually and jointly al-
lowing for a range of investments types such as demand reduction, alternative/repair
preparation, new plants/increased generation, and transmission line defense.
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Chapter 2

Standard Stackelberg Security Model

Our initial work focused on extensions to the standard Stackelberg security model pro-
posed by Kiekintveld et al. [10]. In this model we have a defender who is interested in
determining an optimal defense policy over a set of targets (T ). The defender can choose to
invest resources at any target to reduce the probability of a successful attack at that target,
with the assumption that resources invested will lower the probability of a successful attack.
Opposing the defender we have an adversary, who chooses one of these targets to attack,
knowing the defense policy of the defender. In its simplest form, we can model the utility
of the defender (attacker) for target t ∈ T is Ud

c (t) (Ua
c (t)) when the defender has invested

resources into defending t (representing an attempted attack that was unsuccessful), and
Ud
u(t) (Ua

u(t)) otherwise. We will refer to this model and the corresponding extensions to
other domains as the Standard or Multiplicative model.

One of the convenient properties of Stackelberg (security) games is that the follower
(attacker) always has a pure-strategy (deterministic-strategy) best response, meaning that
against any defense strategy available to the defender there will always exist at least one
single target that they choose to attack that will give them at least as much utility as
any possible mixed-strategy (randomized-strategy) available to them. This fact leads to
the standard method for solving this model is to exploit the independence of the targets,
separating the problem into a series of linear programs; one for each potential target [3].
This formulation, for a specific target t∗ ∈ T is depicted below:

Max pt∗U
d
c (t∗) + (1− pt∗)Ud

u(t∗)−
∑
t

ptct (2.1a)

s.t. (2.1b)

ptU
a
c (t) + (1− pt)Ua

u(t) ≤ pt∗U
a
c (t∗) + (1− pt∗)Ua

u(t∗), ∀t ∈ T (2.1c)

At a high level, line 2.1c forces this LP to only consider defense strategies where target t∗ is
the optimal choice for the attacker by ensuring that the utility that the attacker would get
from every target is at most the utility achieved if the attacker were to choose to attack target
t∗. Given this restriction, the objective forces it to choose the defense strategy that optimizes
utility for the defender. As neither player will be able to increase utility by changing targets,
each of these LP’s returns an equilibria. Finally, if we consider the set of solutions returned
by this set of LP’s (one for each possible target), it should be clear that the globally optimal
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solution for the defender exists in this set and is simple to locate (merely choose the target
that has the highest objective value).

Next, we consider extending this model so that there are multiple types of mitigations
from different sources interacting to determine the utilities of both the attacker and the
defender. Unfortunately, difficulties arise in this multiplicative model if we are interested
in combining multiple probabilistic defense options (e.g. [11] or [9]). An alternative is to
consider a different relationship between security/mitigation options. The two options we
will primarily explore here are an additive model, where the effect of a set of security options
that all effect the same target is the sum of the individual effects, and a maximum model,
where the effect on each target of a set of security options is the maximum of that set.

Our first alternative model, which we will refer to as the Additive (Add) model, we assume
that we have a set M of mitigations, where Ud

m(t) (Ua
m(t)) captures the effect of mitigation

m ∈ M on the utility of the defender (attacker). Below is the LP for finding the optimal
mitigation choice for target t∗:

Max Ud
u(t∗) +

∑
m

pmU
d
m(t∗)−

∑
m

pmcm (2.2a)

s.t. (2.2b)

Ua
u(t) +

∑
m

pmU
a
m(t) ≤ Ua

u(t∗) +
∑
m

pmU
a
m(t∗), ∀t ∈ T (2.2c)

Again, as with the SG model, line 2.2c ensures that the attacker prefers to attack target t∗

and the objective searches within this feasible space to maximize defender utility.

Our next model, which we will refer to as a Maximum (Max) model is similar, but of
course assumes that for each target, if more than one mitigation effects that target, only
the mitigation with the largest effect has any effect. Unfortunately, are forced to add in
one set of Binary variables (B) in the below Mixed-Integer program to solve for the optimal
mitigation choice for target t∗:

Max Ud
u(t∗) + udm,t∗ −

∑
m

pmcm (2.3a)

s.t.

Ua
u(t) + uam,t ≤ Ua

u(t∗) + uam,t∗ , ∀t ∈ T (2.3b)

uam,t ≤ pmU
a
m(t) + L(1−Ba

m,t), ∀m ∈M, t ∈ T (2.3c)

uam,t ≥ pmU
a
m(t), ∀m ∈M, t ∈ T (2.3d)∑

m

Ba
m,t = 1, ∀t ∈ T (2.3e)

udm,t∗ ≤ pmU
d
m(t∗) + L(1−Bd

m,t∗), ∀m ∈M (2.3f)

udm,t∗ ≥ pmU
d
m(t∗), ∀m ∈M (2.3g)
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∑
m

Bd
m,t∗ = 1 (2.3h)

Again, as with the previous models, line 2.3b ensures that the attacker prefers to attack
target t∗. Lines 2.3c-2.3e (2.3f-2.3h) handle the generation of the max values for each target
for the attacker, uam,t (defender, udm,t).

Next we consider combining these models. Below is the necessary model for combining
the traditional multiplicative and additive models, under the assumption that pt is binary (pt
= 1 when t is defended and pt = 0 when t is undefended) and that the additive mitigations
only have an effect in the event of a successful attack (or rather that they have no effect
against an attack that was prevented):

Max pt∗U
d
c (t∗) + (1− pt∗)Ud

u(t∗) + udm,t∗ −
∑
m

pmcm (2.4a)

s.t.

ptU
a
c (t) + (1− pt)Ua

u(t) + uam,t ≤ pt∗U
a
c (t∗) + (1− pt∗)Ua

u(t∗) + uam,t∗ , ∀t ∈ T (2.4b)

uam(t) ≥
∑
m

pmU
a
m(t)− ptL, ∀t ∈ T (2.4c)

uam(t) ≥ 0, ∀t ∈ T (2.4d)

uam(t) ≤
∑
m

pmU
a
m(t), ∀t ∈ T (2.4e)

uam(t) ≤ (1− pt)L, ∀t ∈ T (2.4f)

udm(t∗) ≥
∑
m

pmU
d
m(t∗)− pt∗L (2.4g)

udm(t∗) ≥ 0 (2.4h)

udm(t∗) ≤
∑
m

pmU
d
m(t∗) (2.4i)

udm(t∗) ≤ (1− pt∗)L (2.4j)

In short, Line 2.4b ensures that the attacker prefers target t∗, while Lines 2.4c-2.4f (2.4g-2.4j)
allow us to correctly calculate the utility effect of the additive mitigations under the current
security configuration for the attacker (defender).

Finally, the model that combines all three types of mitigations, again assuming that pt
is binary and that both additive and maximal mitigations have no benefit against prevented
attacks:

Max Ud
c (t∗) + udm,t∗ + vdm,t∗ −

∑
m

pmcm (2.5a)

s.t. (2.5b)

ptU
a
c (t) + (1− pt)Ua

u(t) + uam,t + vam,t ≤ pt∗U
a
c (t∗)
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+ (1− pt∗)Ua
u(t∗) + uam,t∗ + vam,t∗ , ∀t ∈ T (2.5c)

uam,t ≤ pmU
a
m(t) + L(1−Ba

m,t), ∀m ∈M, t ∈ T (2.5d)

uam,t ≤ L(1− pt), ∀m ∈M, t ∈ T (2.5e)

uam,t ≥ (pm − pt)Ua
m(t), ∀m ∈M, t ∈ T (2.5f)

uam,t ≥ 0,∀m ∈Mt ∈ T (2.5g)∑
m

Ba
m,t = 1, ∀t ∈ T (2.5h)

udm,t∗ ≤ pmU
d
m(t∗) + L(1−Bd

m,t∗), ∀m ∈M (2.5i)

udm,t∗ ≤ pmL(1− pt∗), ∀m ∈M (2.5j)

udm,t∗ ≥ pmU
d
m(t∗),∀m ∈M (2.5k)

udm,t∗ ≥ 0, ∀m ∈M (2.5l)∑
m

Bd
m,t∗ = 1 (2.5m)

vam(t) ≥
∑
m

pmV
a
m(t)− ptL, ∀t ∈ T (2.5n)

vam(t) ≥ 0, ∀t ∈ T (2.5o)

vam(t) ≤
∑
m

pmV
a
m(t), ∀t ∈ T (2.5p)

vam(t) ≤ (1− pt)L, ∀t ∈ T (2.5q)

vdm(t∗) ≥
∑
m

pmV
d
m(t∗)− pt∗L (2.5r)

vdm(t∗) ≥ 0 (2.5s)

vdm(t∗) ≤
∑
m

pmV
d
m(t∗) (2.5t)

vdm(t∗) ≤ (1− pt∗)L (2.5u)

In short, Line 2.4b ensures that the attacker prefers target t∗, while Lines 2.5d-2.5h (2.5i-
2.5m) allow us to correctly calculate the utility effect of the additive mitigations under the
current security configuration for the attacker (defender) and Lines 2.5n-2.5q (2.5r-2.5u)
allow us to correctly calculate the utility effect of the maximal mitigations under the current
security configuration for the attacker (defender).

Combined models for the other two combinations ({Multiplicative,Max},{Additive,Max})
appear in Appendix A.

Next, we experimentally compared the computational aspects of these models on ran-
domly generated problem instances. We found that the while the three simple models scaled
relatively well, most of the combined models scaled fairly poorly. However, we found we could
exploit the multiple LP/MIP nature of the problem, as we are solving a series of individual
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Figure 2.2: Average runtime:
Additive model

(but not independent) MIPs. We found that a simplified version of branch and bound, where
we maintain the current best solution from the set of targets (which is a admissible upper
bound on the optimal solution) we have already solved for, and terminate each LP/MIP
whenever the lower bound for the solution is higher than our current upper bound. In other
words, once the solver can prove that the solution for the current target cannot beat the
best from the previously solved set of targets, we can move on to the next potential target.
We found that this led to a significant speedup for the more complex models (the combined
models). Figures 2.1-2.7 show the runtime both with and without this optimization for each
of these models on problems between 100 and 10,000 targets solved via Gurobi 5.5.0 with
1-4 core 1.6Ghz processor and 6GB RAM (averaged over 10 runs). Points are omitted when
runtime exceeded a day (such as in Figure 2.7 for 1,000 or more targets). Interestingly, this
technique gave almost no improvement on the additive model (which was already the fastest
model). The next smallest effect was on the other two simple models, at best it is reducing
what appears to be a quadratic growth in runtime in the non-optimized case to a linear
growth. Finally, in all of the combined models we see the largest increase in performance.
Unsurprisingly, the effect is largest in the model that combines all three components, where
even problems with only 1,000 targets fail to finish before our cutoff in the non-optimized
case, but with the optimization 10,000 targets takes under four hours.
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Chapter 3

Simple Network Model

Here, rather than having a set of independent targets, we instead assume that we have
a set of connected targets, represented by a graph (G = (E, V )). As in [12] we assume that
the graph represents the ability of an attack at a specific node to spread to other nodes in
the graph (with the value on edge (t1,t2) representing the probability that an attack that
successfully effects t1 to then spread and also effect t2). Furthermore, we assume that once
a target is compromised (either directly or indirectly), it can further spread to all as of yet
uncompromised targets adjacent to the newly compromised node. While calculating the total
effect of an attack was non-trivial, a simulation based approach was taken to determine the
total utility for either players from an attack at each target. We will take a similar approach,
but rather than condensing the simulation result for each target to a single number, instead
have an |T |2 relationship matrix that captures the probability of an attack at each target
effecting each other target. To generate these value we adapted a well known approach for
finding connected components [8].

• Iteratate over the following procedure:

– Subsample the graph, including each edge with the probability that edge would
spread an attack.

– Calculate the connected components in this subsample.

– For each pair of nodes, increment a counter if they are in the same connected
component.

As the number of iterations increases, this count divided by the number of iterations will
approach the probability of an attack starting at the first node spreading also compromising
the second. This approach takes |V |+ |E| time in each iteration to calculate the connected
components and

∑
i |ci|2 ≤ |V |2 to update the counts, where ci ∈ C is the set of connected

components. The only step left is to know how many iterations to run. We choose a simple
thresholding approach, where we kept increasing the number of iterations until the change
was under a defined threshold.

Thus, we can reflect the utility for successfully attacking a given target is the sum of the
probabilities times the value of each other target. This allows us to weight additive or max
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mitigation values differently for each target, proportional to the chance that the mitigation
will effect an attack on that target.

The standard formulation is mainly unchanged, we substitute Ut =
∑

t∗ γt,t∗Ut∗ , where
γt,t∗ captures the probability that an attack originating at t will propagate to t∗.

For the additive models, we again substitute Ut =
∑

t∗ γt,t∗Ut∗ , but also need to change
how we handle the mitigations. If we let Ud

m(t) (Ua
m(t)) capture the effect of mitigation m

on a successful attack that propagates to t for the defender (attacker), the additive model
becomes:

Max
∑
t̂

γt∗,t̂U
d
u(t̂) +

∑
t̂

γt∗,t̂
∑
m

pmU
d
m(t̂)−

∑
m

pmcm (3.1a)

s.t. (3.1b)∑
t̂

γt,t̂U
a
u(t̂) +

∑
t̂

γt,t̂
∑
m

pmU
a
m(t̂) ≤

∑
t̂

γt∗,t̂U
a
u(t̂) +

∑
t̂

γt∗,t̂
∑
m

pmU
a
m(t̂), ∀t ∈ T

(3.1c)

Similarily, the multiplicative model becomes:

Max
∑
t̂

γt∗,t̂U
d
u(t̂) +

∑
t̂

γt∗,t̂u
d
m,t̂ −

∑
m

pmcm (3.2a)

s.t.∑
t̂

γt,t̂U
a
u(t̂) +

∑
t̂

γt,t̂u
a
m,t̂ ≤

∑
t̂

γt∗,t̂U
a
u(t̂) +

∑
t̂

γt∗,t̂u
a
m,t̂, ∀t ∈ T (3.2b)

uam,t ≤ pmU
a
m(t) + L(1−Ba

m,t), ∀m ∈M, t ∈ T (3.2c)

uam,t ≥ pmU
a
m(t), ∀m ∈M, t ∈ T (3.2d)∑

m

Ba
m,t = 1, ∀t ∈ T (3.2e)

udm,t∗ ≤ pmU
d
m(t∗) + L(1−Bd

m,t∗), ∀m ∈M (3.2f)

udm,t∗ ≥ pmU
d
m(t∗), ∀m ∈M (3.2g)∑

m

Bd
m,t∗ = 1 (3.2h)

The combined models are updated similarily, but are omitted here for brevity.

Experimentally, we explored the computational aspects of these models as we did in
the previous section. We evaluated these sampling techniques on Erdős-Reńyi (ER) [5] and
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BarabsiAlbert (BA) [1] random graphs. Luckly, even though we can only bound the runtime
by |V 2, we found in practice that one of two things happened in these random graphs. Either
the connected components were large, but fairly stable and the algorithm converged after
a small number of iterations, or the connected components were fairly small and although
a larger number of iterations was necessary, each iteration ran quickly. Figure 3.1 shows
the runtime of just preprocessing step necessary to generate the models on an ER graph
with p = .25 and spread chances randomly drawn for each edge uniformly from (.25,.75), the
runtimes of the models themselves were effectively the same as in Figures 2.1-2.7.
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Chapter 4

Power Grid Models

Here we explored the computational aspects of different extensions of the standard DC
power flow models. These models extend the models discussed above by adding in the
following elements:

• Constraints that force a balance of flow between the sources (generators) and the given
demands.

• Kirchhoff voltage law enforcement between operational transmission elements.

• Thermal capacity constraints on operational transmission elements.

First, consider the simple case where the adversary is only allowed to attack one compo-
nent of the power grid. A simple solution to this setting is to evaluate the system for each
possible attack, effectively generating a normal form game as defined above. Unfortunately,
while simple to solve, this approach scales poorly as we increase the number of targets the
adversaries is able to attack, for 2 components this generates O(n2) subproblems and for k
components (nk). To explore this setting for k > 1, we extend the defender-attacker-defender
model proposed in [17] using a column-and-constraint generation technique. The approach
proposed in [17] maps to the multiplicative setting we explored in Section 2. In the remain-
der of this section we first extend their model to handle utility weights on load shed, explain
how to separate the problem to apply a column-and-constraint approach, and finally show
both the model and column-and-constraint problem change as we add in additional defense
options.

Nomenclature

Indicies and sets

N set of indicies of busses, indexed by n

21



J set of indicies of generators, index by j

Jn set of indicies of generators connected to bus n

L set of indicies of transmission assets, indexed by l

o(l) origin bus of transmission asset l

d(l) destination bus of transmission asset l

Z set of possible defense options

Parameters

S budget of attacker on out-of-service transmission assets

R budget of defender’s protection decision

Dn demand at bus n (in megawatts)

Un utility loss per megawata of load shed at bus n

U zn
n reduction in utility loss per megawata at bus n with mitigation zn

Gj generation capacity of generator j (in megawatts)

Pl power flow capacity of transmission line l (in megawatts)

xl reactance at line l (Ω)

δ phase angle capacity of conneting bus

Decision Variables

z binary protection decision, 1 if chosen, 0 otherwise

vl binary attack decision, 0 if line l is attacked, 1 otherwise

dn load shed at node n

dzn load shed at node n partially mitigated by protection decision z

δn phase angle at node n

gj generation level of generator j

pl power flow on line l
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Model

In our first, standard multiplicative model, we let set of possible defense actions be one
per line (zl ∈ Z).

Minz∈Z Maxv∈V Minpl,gj ,dn,δn
∑
n∈N

Undn (4.1a)

s.t. (4.1b)∑
l∈L

zl ≤ R (4.1c)∑
l∈L

(1− vl) ≤ S (4.1d)

plxl = (zl + vl − zlvl)[δo(l) − δd(l)] ∀l ∈ L (4.1e)∑
j∈Jn

gj −
∑

l:o(l)=n

pl +
∑

l:d(l)=n

pl + dn = Dn ∀n ∈ N (4.1f)

− Pl ≤ pl ≤ Pl ∀l ∈ L (4.1g)

− δ ≤ δn ≤ δ ∀n ∈ N (4.1h)

0 ≤ gj ≤ G ∀j ∈ J (4.1i)

0 ≤ d≤Dn ∀n ∈ N (4.1j)

Solving this Model

Consider the solution approach proposed in [17] (again with the minor addition of demand
utility). This an standard constraint generation approach, iteratively using a master program
to solve for the optimal defense choices against a restricted set of possible attacks, solving
for the optimal attack against that defense, and then adding this new attack to the set of
possible attacks (or ending when it fails to find a new attack).

Min α (4.2a)

s.t. (4.2b)

α ≥
∑
n∈N

Und
i
n ∀i ∈ {1, ..., k} (4.2c)∑

l∈L

zl ≤ R (4.2d)

plxl = (zl + vil − zlvil)[δo(l) − δd(l)] ∀l ∈ L, i ∈ {1, ..., k} (4.2e)∑
j∈Jn

gj −
∑

l:o(l)=n

pl +
∑

l:d(l)=n

pl + din = Dn ∀n ∈ N, i ∈ {1, ..., k} (4.2f)
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− Pl ≤ pil ≤ Pl ∀l ∈ L, i ∈ {1, ..., k} (4.2g)

0 ≤ gij ≤ Gj ∀j ∈ J, i ∈ {1, ..., k} (4.2h)

0 ≤ din ≤ Dn ∀n ∈ N, i ∈ {1, ..., k} (4.2i)

− δ ≤ δin ≤ δ ∀n ∈ N, i ∈ {1, ..., k} (4.2j)

Unfortunately, constraint 4.2e is nonlinear. However, in this subproblem, for a given value
of i, we know exactly which lines have been attacked. Lines that have not been attacked are
easy (as defense of that line does nothing against that particular attack), as we can simply
write them as :

pilxl = δio(l) − δid(l)

For lines that have been attacked, we simply allow the defender to negate that attack
(effectively turning that edge back on) with z. We can model this by introducing a large
constant value (M):

pilxl − [δio(l) − δid(l)] ≤M(1− zl)

pilxl − [δio(l) − δid(l)] ≥M(zl − 1)

−Plzl ≤ pil ≤ Plzl

This allows us to generate the optimal defense against a restricted set of possible attacks.
The next step is to develop an attacker oracle to populate this set. To do so we solve a
two-level problem that finds for the optimal attack against a fixed defense strategy:

max min
∑
n∈N

Undn (4.3a)

s.t. (4.3b)∑
l∈L

(1− vl) ≤ S (4.3c)

plxl − (ẑl + vl − ẑlvl)[δo(l) − δd(l)] = 0, ∀l ∈ L (4.3d)

− Pl ≤ pl ≤ Pl, ∀l ∈ L (4.3e)∑
jJn

gj −
∑

l|o(l)=n

pl +
∑

l|d(l)=n

pl + dn = Dn, ∀n ∈ N (4.3f)

0 ≤ gj ≤ Gj, ∀j ∈ J (4.3g)

0 ≤ dn ≤ Dn, ∀n ∈ N (4.3h)

− δ ≤ δn ≤ δ (4.3i)

vl ∈ 0, 1, ∀l ∈ L (4.3j)
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Again, we first have to deal with the non-linearity in constraint 4.3d. The approach will
be similar to how we dealt with this issue in Equation 4.2. We will break the set of lines
into two sets, those lines that are currently unprotected by the defender (La) and those
lines that are currently being defended by the defender (Lb). This allows us to rewrite
constraint 4.3d&4.3e for La as:

plxl − [δo(l) − δd(l)] ≤M(1− vl), ∀l ∈ La (4.4a)

plxl − [δo(l) − δd(l)] ≥M(1− vl), ∀l ∈ La (4.4b)

− Plvl ≤ pl ≤ Plvl (4.4c)

and for Lb as:

plxl = δo(l) − δd(l), ∀l ∈ Lb (4.4d)

− Pl ≤ pl ≤ Plvl (4.4e)

Next, since the lower level of this problem is guaranteed to have a feasible solution for
any possible setting of V, we can rewrite this bi-level program as a single level program by
taking the dual of the lower level and merging in the resulting maximization. If we assign
the following {dual variables,constraint} pairs: {λn, 4.3f}, {γn, 4.3g}, {αn, 4.3i}, {ξn & χn,
4.3i}, {βl & τl, 4.4a & 4.4a}, {Θl & ρl,4.4c }, {µl, 4.4d}, and {phil & ϕl,4.4e}.

The resulting single level MIP becomes:

max
∑
l∈Lb

Pl(φl − ϕl) +
∑
l∈La

M(βl − β′l − τl + τ ′l ) +
∑
j∈J

Gjγj

+
∑
n∈N

δ(ξn − χn) +
∑
n∈N

Dn(αn + λn) +
∑
l∈La

Pl(Θ
′
l − ρ′l) (4.5a)

s.t. (4.5b)∑
l∈L

(1− vl) ≤ S (4.5c)

xlµl + φl + ϕl − λn:o(l)=n + λn:d(l)=n = 0, ∀l ∈ Lb (4.5d)

xlβl + xlτl + Θl + ρl − λn:o(l)=n + λn:d(l)=n = 0, ∀l ∈ La (4.5e)

γj + λn:j∈Jn ≤ 0, ∀j ∈ J (4.5f)∑
l∈Lb:d(l)=n

µl −
∑

l∈Lb:o(l)=n

µl +
∑

l∈La:d(l)=n

(βl + τl)−
∑

l∈La:o(l)=n

(βl + τl)

+ (ξn + χn) = 0, ∀n ∈ N (4.5g)

λn + αn ≤ Un, ∀n ∈ N (4.5h)

β′l ≤ βl +M(1− vl), ∀l ∈ L (4.5i)

β′l ≥ βl −M(1− vl), ∀l ∈ L (4.5j)

−Mvl ≤ β′l ≤Mvl, ∀l ∈ L (4.5k)
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τ ′l ≤ τl +M(1− vl), ∀l ∈ L (4.5l)

τ ′l ≥ τl −M(1− vl), ∀l ∈ L (4.5m)

−Mvl ≤ τ ′l ≤Mvl, ∀l ∈ L (4.5n)

Θ′l ≤ Θl +M(1− vl), ∀l ∈ L (4.5o)

Θ′l ≥ Θl −M(1− vl), ∀l ∈ L (4.5p)

−Mvl ≤ Θ′l ≤Mvl, ∀l ∈ L (4.5q)

ρ′l ≤ ρl +M(1− vl), ∀l ∈ L (4.5r)

ρ′l ≥ ρl −M(1− vl), ∀l ∈ L (4.5s)

−Mvl ≤ ρ′l ≤Mvl, ∀l ∈ L (4.5t)

γj ≤ 0, ∀j ∈ J (4.5u)

ξn ≤ 0, αn ≤ 0, χn ≤ 0, λnfree, ∀n ∈ N (4.5v)

βl ≤ 0,Θl ≤ 0, τl ≥ 0, ρl ≥ 0, ∀l ∈ La (4.5w)

µlfree, φl ≤ 0, ϕl ≥ 0, ∀l ∈ Lb (4.5x)

Note that β′l, τ
′
l , Θ′l, and ρ′l are again created to deal with non-linearity in the direct dual

formulation (as these values depend on vl). Finally, we combine these two problems (the
defender’s master problem and the attacker’s subproblem) in an iterative fashion as follows:

• Solve the attacker’s subproblem against an empty defense and add this attack v1 to a
set of attack plans V̂

• Until we try to add an attack vk to V̂ that it already contains:

– Solve the defender’s master problem against V̂ , let the optimal defense generated
be ẑ

– Solve the attacker’s subproblem against ẑ, and add this attack vk to V̂

This approach is guaranteed to converge as it can add each possible attack set at most
once and there are a finite set of possible attacks. Proving it will converge to an optimal
equilibrium for the defender is also easy to show: First, the attacker is simply best responding
to the most recent defense of the defender. If the attacker chooses a particular attack for
the second time, it will be in V̂ , and thus the utility calculated by the defender’s master
problem in that will have taken that possible attack into consideration. Thus both the
utilities calculated by the sub and master problems in that iteration will match and neither
player will be able to deviated to increase their utility. Thus this solution will be optimal
equilibrium solution for the defender.
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Additional models

We now propose the following alternative defensive models to this problem. Note that
initially, we consider the changes necessary to replace the previous set of defense actions (of
making lines immune to attacks), with a series of alternative defense models. We will defer
discussion on how each of these changes effects the column-and-constraint method to the
end of the section. First, we consider a model consisting of reducing the utility loss from
load shed. Consider the case where multiple defense options combine cumulatively:

Minz∈Z Maxv∈V Minpl,gj ,dn,δn
∑
n∈N

Undn −
∑

n∈N,z∈Z

U z
nd

z
n (4.6a)

s.t. (4.6b)∑
i∈|Z|

zi ≤ R (4.6c)

∑
l∈L

(1− vl) ≤ S (4.6d)

plxl = (vl)[δo(l) − δd(l)], ∀l ∈ L (4.6e)∑
j∈Jn

gj −
∑

l:o(l)=n

pl +
∑

l:d(l)=n

pl + dn = Dn, ∀n ∈ N (4.6f)

dzn ≤ dn, ∀z ∈ Z, n ∈ N : U z
n > 0

(4.6g)

dzn ≤ z, ∀z ∈ Z, n ∈ N : U z
n > 0

(4.6h)

− Pl ≤ pl ≤ Pl, ∀l ∈ L (4.6i)

− δ ≤ δn ≤ δ, ∀n ∈ N (4.6j)

0 ≤ gj ≤ G, ∀j ∈ J
(4.6k)

0 ≤ d≤Dn, ∀n ∈ N (4.6l)

Note that this model differs from Eq. 4.1 in the objective, the attack constraints (4.6e)
and with the addition of two sets of constraints to capture the amount load shed that is
mitigated by each defense action (4.6g-4.6h). Next, consider the second alternative, where
when multiple defense options overlap, we take pessimistically take only the maximial value:

Minz∈Z Maxv∈V Minpl,gj ,dn,δn
∑
n∈N

Undn −
∑
n∈N

Um
n (4.7a)

s.t. (4.7b)
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∑
i∈|Z|

zi ≤ R (4.7c)

∑
l∈L

(1− vl) ≤ S (4.7d)

plxl = (vl)[δo(l) − δd(l)], ∀l ∈ L (4.7e)∑
j∈Jn

gj −
∑

l:o(l)=n

pl +
∑

l:d(l)=n

pl + dn = Dn, ∀n ∈ N (4.7f)

dzn ≤ dn, ∀z ∈ Z, n ∈ N : U z
n > 0 (4.7g)

dzn ≤ z, ∀z ∈ Z, n ∈ N : U z
n > 0 (4.7h)

Um
n −Mz ≤ U z

nd
z
n, ∀z ∈ Z, n ∈ N : U z

n > 0 (4.7i)

Um
n ≥ U z

nd
z
n −M(1− bzn), ∀z ∈ Z, n ∈ N : U z

n > 0 (4.7j)∑
z∈Z:Uz

n>0

bzn = 1, ∀n ∈ N (4.7k)

bzn ≤ z, ∀z ∈ Z, n ∈ N : U z
n > 0 (4.7l)

− Pl ≤ pl ≤ Pl, ∀l ∈ L (4.7m)

− δ ≤ δn ≤ δ, ∀n ∈ N (4.7n)

0 ≤ gj ≤ G, ∀j ∈ J (4.7o)

0 ≤ d≤Dn, ∀n ∈ N (4.7p)

This model differs from Eq. 4.1 in the objective, the attack constraints (4.7e) and with
the addition of constraints that capture the total amount of load shed mitigated at each bus
(4.7i-4.7l).

The next two models we consider are two different ways to modify the amount of power
available/needed. Our first model here captures the case where the defender is able to invest
their resources in increasing the available power at one or more of the buses:

Minz∈Z Maxv∈V Minpl,gj ,dn,δn
∑
n∈N

Undn (4.8a)

s.t. (4.8b)∑
l∈L

zl ≤ R (4.8c)∑
l∈L

(1− vl) ≤ S (4.8d)

plxl = (zl + vl − zlvl)[δo(l) − δd(l)], ∀l ∈ L (4.8e)∑
j∈Jn

gj −
∑

l:o(l)=n

pl +
∑

l:d(l)=n

pl + dn = Dn, ∀n ∈ N (4.8f)
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− Pl ≤ pl ≤ Pl, ∀l ∈ L (4.8g)

− δ ≤ δn ≤ δ, ∀n ∈ N (4.8h)

0 ≤ gj ≤ Gj, ∀j ∈ J (4.8i)

0 ≤ gj ≤ zj, ∀j ∈ Jz (4.8j)

0 ≤ dn ≤ Dn, ∀n ∈ N (4.8k)

Here we simply add an extra set of generators (Jz), which the solution is not allowed to
use unless zj is 1. Next, we consider the converse side of the previous model, rather than
adding in new generation supply, we instead allow the defender to invest in reducing demand
at different nodes. One possible way this might be effected is through energy efficiency
subsidies. While the effect of this model is fairly similar to the previous model (as our model
does not consider explicitly consider generator costs), in some cases demand reduction is
actually inferior to additional generation capacity, as with load shed being weighted, there
are cases where additional generation at a bus would allow us to reduce load shed on another
node, while demand reduction at that node only allows us to reduce load shed at that node.
The model for this is:

Minz∈Z Maxv∈V Minpl,gj ,dn,δn
∑
n∈N

Undn (4.9a)

s.t. (4.9b)∑
n∈N

zn ≤ R (4.9c)∑
l∈L

(1− vl) ≤ S (4.9d)

plxl = (vl)[δo(l) − δd(l)], ∀l ∈ L (4.9e)∑
j∈Jn

gj −
∑

l:o(l)=n

pl +
∑

l:d(l)=n

pl + dn + dznzn = Dn, ∀n ∈ N (4.9f)

− Pl ≤ pl ≤ Pl, ∀l ∈ L (4.9g)

− δ ≤ δn ≤ δ, ∀n ∈ N (4.9h)

0 ≤ gj ≤ G, ∀j ∈ J (4.9i)

0 ≤ dn + dznzn ≤ Dn, ∀n ∈ N (4.9j)

Next, we consider models that combine more than one of these five potential mitigation
types. For brevity, we will jump straight to the fully combined model (utilizing all 5 types
of mitigation, multiplicative (Zl), additive (Za), maximal (Zm), generator (Zj) and demand
(Zd)). Similar constructions exist, but are omitted, for all subsets of these 5 mitigations.
Notationally, we let Z = Zl + Za + Zm + Zj + Zd:
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Minz∈Z Maxv∈V Minpl,gj ,dn,δn
∑
n∈N

Undn −
∑

n∈N,z∈Za

U z
nd

z
n −

∑
n∈N

Um
n (4.10a)

s.t. (4.10b)∑
i∈Z

zi ≤ R (4.10c)∑
l∈L

(1− vl) ≤ S (4.10d)

plxl = (zl + vl − zlvl)[δo(l) − δd(l)], ∀l ∈ L
(4.10e)∑

j∈Jn

gj −
∑

l:o(l)=n

pl +
∑

l:d(l)=n

pl + dn + dznz
d
n = Dn, ∀n ∈ N

(4.10f)

dzn ≤ dn, ∀z ∈ Za, n ∈ N : U z
n > 0

(4.10g)

dzn ≤ z, ∀z ∈ Za, n ∈ N : U z
n > 0

(4.10h)

dzn ≤ dn, ∀z ∈ Zm, n ∈ N : U z
n > 0

(4.10i)

dzn ≤ z, ∀z ∈ Zm, n ∈ N : U z
n > 0

(4.10j)

Um
n −Mz ≤ U z

nd
z
n, ∀z ∈ Zm, n ∈ N : U z

n > 0
(4.10k)

Um
n ≥ U z

nd
z
n −M(1− bzn), ∀z ∈ Zm, n ∈ N : U z

n > 0
(4.10l)∑

z∈Z:Uz
n>0

bzn = 1, ∀n ∈ N

(4.10m)

bzn ≤ z, ∀z ∈ Z, n ∈ N : U z
n > 0

(4.10n)

− Pl ≤ pl ≤ Pl, ∀l ∈ L
(4.10o)

− δ ≤ δn ≤ δ, ∀n ∈ N
(4.10p)

0 ≤ gj ≤ G, ∀j ∈ J
(4.10q)
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0 ≤ gj ≤ zj, ∀j ∈ Jz
(4.10r)

0 ≤ dn + dznzn ≤ Dn, ∀n ∈ N
(4.10s)

Our approach for solving this combined model is similar to the approach for only the
multiplicative model. The new master problem (after addressing the non-linearity issues)
becomes:

Min α (4.11a)

s.t. (4.11b)

α ≥
∑
n∈N

∑
n∈N

Und
i
n −

∑
n∈N,z∈Za

U z
nd

i,z
n −

∑
n∈N

Um,i
n , ∀i ∈ {1, ..., k} (4.11c)∑

i∈Z

zi ≤ R (4.11d)

pilxl − [δio(l) − δid(l)] ≤M(1− zl), ∀l ∈ Lia, i ∈ {1, ..., k} (4.11e)

pilxl − [δio(l) − δid(l)] ≥M(zl − 1), ∀l ∈ Lia, i ∈ {1, ..., k} (4.11f)

− Plzl ≤ pil ≤ Plzl, ∀l ∈ Lia, i ∈ {1, ..., k} (4.11g)

pilxl = δio(l) − δid(l), ∀l ∈ Lib, i ∈ {1, ..., k} (4.11h)∑
j∈Jn

gj −
∑

l:o(l)=n

pl +
∑

l:d(l)=n

pl + din + di,zn z
d
n = Dn, ∀n ∈ N, i ∈ {1, ..., k} (4.11i)

− Pl ≤ pil ≤ Pl, ∀l ∈ L, i ∈ {1, ..., k} (4.11j)

0 ≤ gij ≤ Gj, ∀j ∈ J, i ∈ {1, ..., k} (4.11k)

0 ≤ gij ≤ zj, ∀j ∈ Jz, i ∈ {1, ..., k} (4.11l)

0 ≤ din ≤ Dn, ∀n ∈ N, i ∈ {1, ..., k} (4.11m)

− δ ≤ δin ≤ δ, ∀n ∈ N, i ∈ {1, ..., k} (4.11n)

Interestingly, these new mitigations don’t require new constraints in the subproblem, as
by this time the defender’s choices are fixed. Thus, we merely have to update some of the
constant values in Eq. 4.3 in each iteration (as an example, consider demand reduction:
if a particular defense allocation reduces demand for node n’, then we replace Dn with
D′n = Dn − dzn in Constraint 4.3f).

The only real concern is that the much larger space of potential defense actions will require
a significant increase in the number of iterations. We look at this question experimentally
in the next section.
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Chapter 5

Experiments

We evaluated both the multiplicative model with utilities and the combined model on
the IEEE one-area RTS-1996 system [6] with CPLEX 12.5 on a machine with 4-16 core 2.70
GHz processors and 512 GB RAM using a maximum of 16 threads. This system has 24
buses, 38 lines, 32 generators and 17 loads. Our goal was to prepare a pair of multiplicative
and combined models that was as comparable as possible, to measure the effect of adding
in new defense options on both runtime and utility. The bus demands, starting set of
generators and line resistances are taken from the data available on the system. For both
systems we assigned all low demand busses (those with at most 180) a utility weight of 2
with the option for the defender to reduce this utility loss back to 1 by spending defense
resources in the combined system. In both systems all lines are available as targets for both
the attacker and the defender. Finally, we for our combined model, we added an extra set
of synthetically defense options, namely demand reduction for each bus and new potential
generators (duplicates of existing generators) at existing generator locations. We solved both
of these systems for the optimal set of mitigations (and the corresponding loss) for attack
budgets (number of edges removed) between 1 and 12 and defense budgets between 0 and 6.
In the following subsections we will discuss the effects that these additional defense resources
had on both runtime and weighted Load shed.

Runtime

Tables 5.1&5.2 show the runtime in seconds for each attacker budget,defender budget
pairing for these two models. Clearly, in both cases, while the problem becomes more
complex as both attacker and defender resources increase, once we have a few attacker
resources, increasing defense resources seems to have a larger effect on runtime. Of particular
note is the fact that although the combined model is more complex, it doesn’t perform
noticeably worse. In fact, in some of the hardest cases, it significantly outperforms the
simpler multiplicative model. While we would like to have had more time to follow up on
this and fully explore why this is the case, we hypothesize that it due to the combined models
ability to partially sidestep the combinatorial problem that the attacker and defender jointly
face in determining what lines to attack/defend. If the attacker can cheaply guarantee that
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some small subset of buses will be disconnected unless the defender overcommits to defending
that subset, then allocating demand or utility reduction to that subset effectively reduces the
remaining problem to one with a smaller set of defense resources. This effective reduction
in the number of free defense resources leads to an understandable reduction in runtime.

0 1 2 3 4 5 6
1 0.84 0.75 0.93 0.85 0.84 0.85 0.88
2 2.31 4.44 6.74 10.46 11.43 12.49 19.50
3 1.98 3.73 12.14 18.34 26.37 31.48 51.18
4 2.07 4.57 11.73 27.74 46.13 28.737 65.79
5 2.55 7.07 13.43 28.38 46.00 52.39 88.11
6 5.69 16.69 23.09 75.12 62.16 87.03 108.59
7 2.46 11.10 59.74 75.62 123.61 205.76 190.36
8 5.44 17.69 40.82 107.08 228.51 287.07 289.82
9 3.53 18.94 35.31 98.62 118.74 382.52 683.07
10 4.81 13.51 45.08 73.22 164.91 511.09 937.05
11 5.19 18.53 47.01 86.28 221.31 387.52 1352.70
12 3.11 31.20 37.88 94.18 172.96 443.30 2688.05

Table 5.1: Runtime for Multiplicative Model

0 1 2 3 4 5 6
1 1.66 2.60 2.18 3.32 2.80 3.18 2.11
2 4.44 6.83 11.97 13.61 21.76 23.36 34.63
3 3.77 6.42 12.64 16.61 30.42 36.75 50.89
4 4.12 7.27 16.91 31.61 53.08 54.55 70.53
5 4.98 13.43 14.86 34.17 52.97 68.50 135.56
6 11.97 26.30 30.12 61.65 42.31 164.53 156.65
7 5.02 16.64 56.02 97.44 166.04 212.22 378.11
8 10.08 25.36 44.18 106.20 188.35 212.98 352.36
9 6.90 19.30 32.87 144.90 122.63 318.21 472.43
10 9.31 16.58 46.83 67.01 153.48 378.66 509.76
11 10.43 32.46 50.77 110.04 267.37 462.42 1027.81
12 6.00 31.45 45.18 88.51 247.53 524.29 851.99

Table 5.2: Runtime for Combined Model

Utility

Tables 5.3&5.4 show the calculated attacker utility for each attacker budget,defender
budget pairing for these two models (weighted load shed in MW). As the combined model
contains a super-set of the defense options of multiplicative model, its utility is guaranteed
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to be at least as good as multiplicative model. Thus, what we are interested in is what
in what cases we see an decrease in weighted load shed (and thus an increase in defender
utility). Figures 5.1&5.2 show the difference in utility for each of these points. From this we
can conclude that line defense is still the most important type of defense choice and when
the defender’s budget is low, there is generally no difference in utility. It is only when the
defense budget climbs higher that these alternative defense options are chosen in addition
to line, with the utility gap generally increasing as the defense budget increases. Finally, we
can see the most significant increases when the attack budget is low (and where we can see
significantly diminishing returns for more edge defenses in the multiplicative model).

0 1 2 3 4 5 6
1 0 0 0 0 0 0 0
2 272 194 150.7 148 142 117.7 117.7
3 617.7 570.7 437 421.7 272 265.7 227.7
4 921.7 732.7 672.7 491.7 442 420 348
5 1036.7 969 787.7 709 657 464 463
6 1199 1057.7 868.7 858.7 678 639 503
7 1358.7 1199 979 898 810 748.7 600
8 1473.7 1274.7 1094 943.7 869 810 688
9 1636 1380 1196 1017.7 945.7 884.7 776.7
10 1636 1477 1247 1081.7 1004 942.7 830
11 1711.7 1477 1332 1152.7 1071.7 956.7 869
12 1786 1530 1441 1207.7 1071.7 997 923

Table 5.3: Utility (weighted Load shed in MW) for Multiplicative Model

0 1 2 3 4 5 6
1 0 0 0 0 0 0 0
2 272 194 148 142 56 22 0
3 617.7 517.7 421.7 337 272 205.7 157.7
4 921.7 732.7 632.7 491.7 432.7 372.7 312.7
5 1036.7 936.7 787.7 687.7 609 464 403
6 1199 1057.7 868.7 768.7 597 597 499
7 1358.7 1199 979 863.7 783 687.7 590
8 1473.7 1274.7 1094 943.7 825 725 625
9 1636 1380 1196 1017.7 897.7 797.7 697.7
10 1636 1477 1247 1081.7 961.7 861.7 761.7
11 1711.7 1477 1332 1152.7 1032.7 932.7 832.7
12 1786 1530 1410 1207.7 1071.7 971.7 871.7

Table 5.4: Utility (weighted Load shed in MW) for Combined Model
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Appendix A

Additional Models

MAX + SG

Max pt∗U
d
c (t∗) + (1− pt∗)Ud

u(t∗) + udm,t∗ −
∑
m

pmcm (A.1a)

s.t.

∀t ∈ T :ptU
a
c (t) + (1− pt)Ua

u(t) + uam,t ≤ pt∗U
a
c (t∗) + (1− pt∗)Ua

u(t∗) + uam,t∗
(A.1b)

∀m ∈M, ∀t ∈ T :uam,t ≤ pmU
a
m(t) + L(1−Ba

m,t) (A.1c)

∀m ∈M, ∀t ∈ T :uam,t ≤ L(1− pt) (A.1d)

∀m ∈M, ∀t ∈ T :uam,t ≥ (pm − pt)Ua
m(t) (A.1e)

∀m ∈M, ∀t ∈ T :uam,t ≥ 0 (A.1f)

∀t ∈ T :
∑
m

Ba
m,t = 1 (A.1g)

∀m ∈M :udm,t∗ ≤ pmU
d
m(t∗) + L(1−Bd

m,t∗) (A.1h)

∀m ∈M :udm,t∗ ≤ pmL(1− pt∗) (A.1i)

∀m ∈M :udm,t∗ ≥ (pm − pt∗)Ud
m(t∗) (A.1j)

∀m ∈M :udm,t∗ ≥ 0 (A.1k)∑
m

Bd
m,t∗ = 1 (A.1l)

ADD + MAX

Max Ud
c (t∗) + udm,t∗ +

∑
m

pmV
d
m(t∗)−

∑
m

pmcm (A.2a)

s.t.
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∀t ∈ T :Ua(t) + uam,t +
∑
m

pmVm(t) ≤ Ua(t∗) + uam,t∗ +
∑
m

pmVm(t∗) (A.2b)

∀m ∈M,∀t ∈ T :uam,t ≤ pmU
a
m(t) + L(1−Ba

m,t) (A.2c)

∀m ∈M,∀t ∈ T :uam,t ≥ pmU
a
m(t) (A.2d)

∀t ∈ T :
∑
m

Ba
m,t = 1 (A.2e)

∀m ∈M :udm,t∗ ≤ pmU
d
m(t∗) + L(1−Bd

m,t∗) (A.2f)

∀m ∈M :udm,t∗ ≥ pmUm(t∗) (A.2g)∑
m

Bd
m,t∗ = 1 (A.2h)
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